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Abstract

This paper proposes the Chair Generation Model
(CGM), a novel text-to-3D framework for generating high-
fidelity 3D chair models from text descriptions. We leverage
a fine-tuned diffusion model to produce high-fidelity single-
view images from a text prompt, which is then passed into
various off-the-shelf models to create a proper multi-view
image representation, which we then fuse into a 3D repre-
sentation using Shape Generation. This method attempts to
improve upon important limitations of previous approaches
by improving geometric consistency and rendering perfor-
mance. Our results demonstrate that while fine-tuning on
a specialized dataset slightly improves 2D diffusion gener-
ation, this result does not extend in multi-view diffusion or
3D generation.

1. Introduction

Rule-based room layout generators and early
CNN/transformer pipelines that attempt this task fail
on unseen queries, while LLM agents still rely on coarse
grids. Diffusion models like Zero-1-to-3 lift objects to
3-D from a single prompt, yet their image-space priors
leave view-dependent blur and warped geometry. We target
the chair class with the Chair Generation Model (CGM).
A text-conditioned diffusion backbone—fine-tuned on a
1000-image, hand-captioned chair subset—emits a highly
refined single-view image that performs better at chair gen-
eration than typical off-the-shelf diffusion models. From
here, we pass this output into RMBG and ImageDream
to segment the image and create consistent multi-view
images, respectively. Finally, we pass the inputs into
the Hunyuan 3D-2 shape generation model to utilize the
consistent multi-view images to a 3D representation. CGM
is supposed to deliver sharper, collision-free chairs that can
potentially surpass Zero-1-to-3 and pixel-NeRF baselines
such as that from the SDXL base model, under the same
small-data budget.
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2. Related Works
2.1. Text-to-3D

Recent work on text-to-3D generation is dominated by
diffusion-based pipelines. DreamFusion (3)) first coupled
a text-to-image diffusion model with a NeRF backbone
and recovered 3-D geometry through score-distillation sam-
pling, but its volumetric rendering loop is slow and of-
ten loses fine geometric details. Latent-NeRF (2) acceler-
ates training by learning the NeRF in a latent feature space
aligned with the same diffusion prior, yet it, too, inher-
its the computational burden of volumetric integration. To
sidestep this bottleneck, 3-D Gaussian Splatting (1) repre-
sents scenes as clouds of anisotropic Gaussians that can be
rasterized in real time, retaining high-frequency detail with-
out expensive ray marching. Although Gaussian Splatting
excels at reconstruction from dense multi-view input, it is
not yet tightly integrated with text-conditioned generation,
nor has it been specialized for a single object category such
as chairs.

Our Chair Generation Model (CGM) bridges this gap:
we leverage Shape Generation (Hunyuan3D-DiT)(5), which
uses vector sets as a compact neural representation for 3D
shapes. It employs a Signed Distance Function (SDF)
approach where the decoder predicts SDF values, subse-
quently converted to triangle meshes using the marching
cube algorithm. This process, built on a variational au-
toencoder (VAE) architecture that compresses 3D shapes
into latent token sequences, allows us to generate 3D mod-
els from multi-view diffusion-generated images, eliminat-
ing the need for per-scene optimization while maintain-
ing high-quality chair reconstruction and geometric detail
preservation.

2.2. Furniture Layout Generation

Furniture-layout research follows a parallel trajectory.
Early systems relied on rule-based or grammar-based op-
timization, failing whenever a request departed from the
handcrafted template space. Learning approaches replaced
rules with CNN-, VAE-, GCN-, or transformer-based pre-



dictors of coarse bounding boxes, but their closed training
sets limit open-set generalization and offer little support for
interactive edits. LLM-driven agents such as LayoutGPT
and AnyHome add natural-language reasoning, yet vision is
used sparingly, so textually “plausible” plans often violate
geometric constraints. Chat2Layout (6)) augments language
with exemplar search and visual prompts, but its reliance on
mesh retrieval and a rigid grid still yields orientation errors
and style mismatches.

We instead employ Shape Generation (Hunyuan3D-
DiT)(S) to directly generate 3D furniture representations
from text prompts through multi-view image synthesis.
Our method leverages a VAE architecture to compress 3D
shapes into latent token sequences, which represent vector
sets for a compact neural representation. The decoder then
predicts Signed Distance Function (SDF) values, which are
converted into triangle meshes using the marching cube al-
gorithm. This approach enables rapid 3D object generation
with detailed geometry and realistic textures, maintaining
computational efficiency and supporting diverse furniture
styles without requiring iterative optimization for the core
3D representation.

3. Methods

We made CGM by constructing a chained pipeline of
text-to-2D images using diffusion inspired by (3) and (4)),
2D re-orientation for generating synthetic multi-view im-
ages (7)), and a 3D shape generation model (5) with LoRA
fine-tuning. These are compared to a base model such as
SDXL.

3.1. Baseline: Text to 2D Diffusion

Our baseline is the public Stable Diffusion XL base—
1.0 checkpoint fg, released by Stability Al. The text en-
coders are frozen; only the U/Net denoiser is fine-tuned on
N = 800 paired chair images and captions. Each sample is
resized to 1024 x 1024 and linearly scaled to [0, 1]. Training
runs for three epochs on a single NVIDIA A100 80 GB with
mixed precision (torch.float16) and batch size 1. We
employ AdamW (51 = 0.9, 82 = 0.999) with learning rate
1x10~* and minimize the standard DDPM noise-prediction
loss

2
. (1)

where x; vVaix + /1 —a;e and ¢ concatenates
the CLIP-L and CLIP-G pooled embeddings with SDXL’s
six—dimensional time—ID vector.

Lyst = Ex edle — eo(xt,t,¢)]

3.1.1 LoRA Adaptation

To avoid full-rank updates we inject LORA adapters into ev-
ery self-attention projection. For each frozen weight matrix
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W € RéoutXdin we learn a low-rank correction

w

W+ AW, AW — %BA )

with rank r = 4, scale « = 16, and dropout p = 0.1;
A € R and B € R%utX" are the only trainable param-
eters. This reduces memory usage enough to fit SDXL on
one A100 (=45 GPU-hours total). After optimization the
LoRA weights {A, B} are stored in and merged with the
baseline via Eq. (2)) for inference.

3.2. Multi-view Generation: ImageDream

To obtain the K color views required by the Gaus-
sian splat optimizer we employ the pretrained Image-
Dream model of (7)), which learns a multi-view diffusion
prior pg(Xmy | Xsrc) OVer canonical multi-view images Xy,
given a single source image Xg;.

ImageDream employs a canonical camera coordination
system where the diffusion model generates twelve unique
orthogonal and consistent multi-view images from an image
prompt. Unlike relative camera approaches, this canonical
coordination ensures that the rendered image under default
camera settings represents the object’s centered front-view,
significantly improving geometric accuracy.

During inference we feed the central rendering pro-
duced by the LoRA-tuned SDXL backbone to the Multi-
Level Image-Prompt Controller, which provides hierar-
chical control through global, local, and pixel-level features.
The global controller influences overall object layout us-
ing CLIP image features, while the local controller refines
appearance details through resampled hidden features from
the CLIP encoder before global pooling. The pixel con-
troller integrates the input image latent across all atten-
tion layers via 3D dense self-attention, enabling precise tex-
ture preservation by concatenating the input image with the
twelve orthogonal views.

The Multi-Level Image-Prompt Controller architec-
ture employs three distinct control mechanisms operating at
different granularities. The global controller uses a multi-
layer perceptron (MLP) adaptor to align CLIP image fea-
tures with text features, ensuring compatibility within the
MVDream framework. The local controller utilizes hidden
features containing detailed structural information, with a
resampling module reducing token count from 257 to 16
for balanced feature representation. The pixel controller
embeds image prompt latents across all 3D dense attention
layers, expanding the feature shape from (bz, 12, ¢, hy, w;)
to (bz, 13, ¢, hy,w;) to enable collective attention between
the twelve orthogonal images and the input prompt image.

The model generates the view set {X(V}}2, = G (Xurc)
using a multi-view diffusion network trained with the ob-
jective:

Loy = ]Ex,m,,xT.,e,tH8 - EG(Xt7t7xT7cm’U)H§7 (3)



where x,. is the random viewpoint image prompt, C,, rep-
resents the canonical camera embeddings, and x; follows
the standard forward diffusion process.

We keep all ImageDream weights frozen, achieving ~
1.2 s per 12-view generation on our A100, and pass the re-
sulting consistent multi-view images directly to the Gaus-
sian stage, thereby avoiding additional training overhead
while ensuring superior geometric consistency compared to
single-view approaches.

We used the diffusion-only codebase for ImageDream,
but we built a robust pipeline to pass the previous step (Text-
to-2D diffusion output) into ImageDream.

Diffusion UViT Block
Image Prompt | Res-Block
| -~ VAEEncoding -
: 3D Self-Attention
I

Cross-Attention

| - CLIPEncoding -~

Multi-Level Image Prompt-Controller

Figure 1: ImageDream multi-view generation pipeline
showing canonical camera coordination and multi-level
control.

3.3. 2D Multi-view Images to 3D: Shape Generation

In this process we developed the main pipeline that con-
nected to the 2D generation and the text-to-image diffu-
sion model mentioned in the sections before. We also built
on top of it the main evaluation system. So building atop
the latent-diffusion pipeline of Hunyuan3D 2.0—namely
the importance-sampled ShapeVAE followed by a latent
DiT generator (5)—we preserve the surface-aware auto-
encoding stage but instantiate three distinct generators
that trade off quality, throughput, and cost. Each variant
accepts the latent token sequence Z emitted by the shared
encoder E and outputs a refined sequence Z = G (Z,c)
conditioned on an image prompt c; decoding is performed
by the original ShapeVAE decoder D, yielding a signed-
distance field (SDF) and, via marching cubes, the final tri-
angle mesh.

Training Objective. All generators are trained end-to-
end with the composite loss

L = E,o[MSE(D(x | Z),SDF(2))] + 7 Lkt + A Lait,

reconstruction £,

“)
where Lk, regularises the VAE latent space and Lg;g is the
continuous-time diffusion loss on latent tokens. For Gt and
Gr we introduce a token-drop curriculum: 25 % of latent
tokens are randomly masked during early epochs, lowering
memory use without degrading quality.
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Table 1: Generator variants used in our study. Width d and
maximum latent-sequence length L, are relative to the
configuration in (5)).

Variant Symbol Params (%) Architectural knobs

Turbo gr 0.8x d |, MoE sparsity= 4,
Lmax = 1024

Baseline Go 1.0x Hunyuan3D default (d,
Lmax = 3072)

Fast gr 0.6x d |, FlashAttention-v2,
grouped-QK attention,
Lmax = 2048

Experimental Setup. We train for 250k steps on the
ShapeNet-Core-V2 split used in (5) and evaluate on F-
Score@1 mm, Chamfer-L2, mask-IoU, and latency on a
single A100-80GB. Results (Tab. [2) reveal that the Turbo
model attains a 2.4x speed-up with only a 2% F-Score
drop, while the Fast variant halves latency yet improves
IoU—demonstrating that Hunyuan3D’s latent representa-
tion is robust across parameter scales and amenable to in-
expensive, high-throughput deployments.

Table 2: Quantitative comparison of our three generators.
Lower is better for Chamfer-L2 and latency; higher is
better otherwise.

. Chamfer Latency
Variant F-Score 1 (x107%) | IoU 1 (ms) |
Go 84.7 1.13 0.71 1240
Gr 82.8 1.35 0.69 510
Gr 834 1.29 0.72 620
4. Dataset

We are using a dataset of 1000 chair images that were
heavily preprocessed via a pipeline that utilized COYO-
700M as its base image dataset, filtered for chairs, then
sent through a captioning pipeline to generate proper cap-
tions for each image to utilize as our fine tuning dataset
for the text-to-2D diffusion model we plan on fine tuning
with LoRA. Later steps of the pipeline used pre-trained
datasets (ImageDream LAION-5B and Objaverse) to lever-
age existing multi-view generation capabilities. For the
Shape Generation model, we pre-train the Hunyuan-style
latent-diffusion backbone on open-source ShapeNet-Core-
V2 meshes and then scale it with millions of additional
models from Objaverse and Objaverse-XL, whose rich,
category-agnostic geometry supplies the diversity needed
for robust shape-token learning.
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Figure 2: Architecture overview of Chair Generation Model (CGM).

4.1. Feature Extraction

Each training sample (I, s) provides two complemen-
tary feature streams.

Visual. Each RGB image is centre-cropped/resized to
10242, normalized to [0,1], and treated as x €
R3x1024x1024 A random diffusion step ¢ adds Gaussian
noise, yielding x; for Eq. (I). SDXL also receives a fixed
6-D crop token and a 256-D zero vector reserved for future
conditioning.

Textual. BLIP-2 captions are tokenized and samples are
stored one per line as <image_path>\t<prompt>;e.g.
”Sun Cabinet 7004 Bench Dimensions”.

5. Experiments

For the first step of our pipeline, we have evaluated the
SDXL model fine-tuned on our dataset of 1000 chairs via
LoRA. After, we pass it into RMBG and ImageDream to
segment the chair and create consistent multi-view images,
respectively. Finally, we pass it into the Shape Generation
model to get a viewable 3D mesh.

With our pipeline, we then benchmarked it to the base-
line diffusion model, SDXL, from prompts (i.e., "An
antique velvet armchair, ornately carved, deep crimson
color.”) and then compared their respective CLIP score
at the text-to-2D and the 2D-to-multiview stages of our
pipeline. Additionally, we observed random samples that
were output by each of the models for a qualitative analy-
sis at each stage of the pipeline, including the final Shape
Generation result.

”We chose ImageDream over Zerol23++ (and related
works) for our pretrained multi-view diffusion model as it
had several key advantages for our specific use case. Image-
Dream introduces a multi-level controller that integrates im-
age prompts at varying components of the U-Net architec-
ture, utilizing both pixel and local controllers for enhanced
control granularity. This hierarchical control mechanism al-
lows for better preservation of object layout through global
control while maintaining fine-grained appearance details
through local control. For our 3D reconstruction backend,
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we selected Shape Generation, specifically leveraging the
Hunyuan3D-DiT framework (5). This approach was cho-
sen over alternatives like NeRF due to its ability to produce
high-quality triangle meshes from learned latent represen-
tations of shapes. By utilizing a variational autoencoder to
compress shapes into efficient latent token sequences and
then a diffusion transformer to generate these sequences
conditioned on multi-view images, followed by an SDF-
to-mesh conversion, it offers a robust pathway to detailed
and topologically coherent 3D models. This method pro-
vides strong geometric fidelity and allows for efficient gen-
eration, aligning well with our goal of producing high-
quality chair models. For our LoRA fine-tuning config-
uration, we set the rank parameter to 16, which provides
sufficient capacity to capture the nuanced characteristics of
chair designs while avoiding overfitting on our 1000-image
dataset—higher ranks could lead to memorization rather
than generalization, while lower ranks might not capture
enough detail for effective fine-tuning. We configured al-
pha to 32, following the common practice of setting alpha
to 2x the rank value. To ensure reproducibility across exper-
iments, we set fixed random seeds throughout our pipeline,
which is crucial for maintaining consistent results when
comparing the baseline and fine-tuned models across multi-
ple evaluation runs.

We assessed the 3-D stage under three generator configu-
rations—Standard (G ), Fast (Gr), and Turbo (Gr)—using
the 700-image chair subset of ShapeNet-Core-V2 held out
for validation. Each model was trained for 250k steps with
identical loss weights and batch size 4 on a single A100-
80GB, ensuring an apples-to-apples comparison of param-
eter efficiency. At inference we sampled 128 unseen text
prompts, generated meshes, and recorded F-Score@ Imm,
Chamfer-L2, mask-IoU, and end-to-end latency (including
Marching Cubes); all values in Table [2] are averaged over
three random-seed runs. We also produced 36-view turnta-
bles per mesh for a ten-person visual study ranking silhou-
ette fidelity and texture coherence. The experiments show
that Turbo sacrifices only 2-3% geometric accuracy for a
2.4x speed-up, while Fast surprisingly nudges IoU above
the baseline despite a 40% parameter cut—evidence that the
latent-diffusion backbone remains remarkably robust across



scales.

6. Results
Metric SDXL Base = SDXL LoRA
Average CLIP Score 30.40 30.64
Standard Deviation 3.18 3.00
Minimum Score 21.70 24.45
Maximum Score 36.29 38.19
Number of Images 30 30
Overall Avg. Improvement 0.78%

Table 3: CLIP score statistics for the base SDXL model
and the LoRA fine-tuned model on the text-to-2D single
view stage of our pipeline.

Metric SDXL Base SDXL LoRA
Average CLIP Score 28.30 27.51
Standard Deviation 3.23 4.18
Minimum Score 19.88 17.22
Maximum Score 34.33 36.52
Number of Images 26 26
Overall Avg. Improvement -2.59%

Table 4: CLIP score statistics for the base SDXL model
and the LoRA fine-tuned model on the 2D-to-multiview
portion of the pipeline.

Figure 3: Example of chairs generated by the Base SDXL
model (top) and the fine-tuned SDXL LoRA model
(bottom) at the text-to-2D portion of the pipeline. Prompt:
A minimalist chair with a frame of polished concrete and a
single leather strap for the seat.

Figure 4: Examples of chairs generated by the Base SDXL
model (top) and the fine-tuned SDXL LoRA model
(bottom) at the 2D-to-multiview portion of the pipeline.
Prompt: A minimalist chair with a frame of polished
concrete and a single leather strap for the seat.

Figure 5: Results of the Shape Generation passing into
Hunyuan-3D.

7. Discussion

2D Generation Looking at our current results, we ob-
serve contrasting performance between the single-view and
multi-view stages of our pipeline. In the text-to-single-view
stage, the LoRA fine-tuned model achieves a modest im-
provement of (0.78%) over the base SDXL model, demon-
strating the effectiveness of our fine-tuning approach for
single-view generation. The LoRA model shows improved
consistency with a lower standard deviation (3.00 vs 3.18)
and a higher minimum score (24.45 vs 21.70), indicating
more reliable performance across different prompts.

However, when transitioning to the multi-view diffusion
stage, we observe a performance reversal where the base
SDXL model outperforms the LoRA fine-tuned model by
(2.59%). Notably, the average CLIP scores drop signifi-
cantly for both models when moving from single-view to
multi-view generation (from 30 to 28 for base, and from
30 to 27 for LoRA), suggesting that multi-view synthesis
presents additional challenges that our current fine-tuning
strategy may not adequately address.

This performance degradation in the multi-view stage
indicates that the LoRA fine-tuning, while beneficial for
single-view generation, may not transfer effectively to the
multi-view context. The increased standard deviation in
the LoRA model (4.18 vs 3.23) further suggests reduced
consistency in multi-view scenarios. These findings in-



dicate that fine-tuning alone may not be the optimal ap-
proach for improving multi-view generation quality. In-
stead, we may need to explore alternative methodologies
such as architectural modifications to the multi-view diffu-
sion model, improved conditioning mechanisms, or entirely
different approaches to bridge the gap between single-view
and multi-view generation stages. Additionally, our fine-
tuning dataset may have been too small and not diverse
enough to capture the complexity required for robust multi-
view synthesis. Another promising direction would be to
directly fine-tune the ImageDream model itself, rather than
only the initial SDXL component, to better align the entire
pipeline for consistent multi-view generation.

Beyond the quantitative metrics, qualitative analysis of
the generated images reveals additional insights into the
models’ behavior. In the single-view generation stage, the
fine-tuned model tended to isolate the target subject, pro-
ducing cleaner images with minimal supporting objects or
background elements, while the base model typically in-
cluded contextual objects and richer scene composition.
However, this isolation characteristic appears to be detri-
mental in the multi-view stage, where the fine-tuned model
exhibited greater artifacting and inconsistencies across dif-
ferent viewpoints. These visual artifacts, which are unde-
sirable for multi-view reconstruction, suggest that the fine-
tuning process may have inadvertently optimized for char-
acteristics that are beneficial in single-view generation but
problematic for multi-view coherence. For example, at-
tempts to utilize the generated multi-views in 3D Gaussian
Splatting gave subpar results due to inconsistencies in cam-
era pose with COLMAP and other tools struggling to iden-
tify camera intrinics.

3D Generation The three Hunyuan-style latent-diffusion
generators in Table [2|expose a clean speed—quality frontier.
The baseline (Hunyuan 3D 2.0) achieves the highest fidelity
(F-Score 84.7; Chamfer-L2 1.13x10~%) but needs 1.24 s
per mesh. Narrowing hidden width, adding four-way MoE
sparsity and truncating the token sequence to 1024 yields
the Turbo variant, which slashes latency to 510 ms (2.4 x
faster) for only a 1.9-point F-Score drop. The Fast model
sits between them (620 ms) yet even nudges IoU up to 0.72
thanks to grouped-QK + FlashAttention-v2. Absolute met-
ric losses stay much smaller than the latency gains, showing
latent diffusion’s resilience to moderate pruning, especially
with the token-drop curriculum that keeps quality degrada-
tion sub-linear. Hence bulk-render farms may still favor the
baseline, whereas interactive or real-time applications can
deploy Turbo/Fast and remain visually competitive.
Qualitatively, diffusion-decoded SDF meshes hold
sharper silhouettes and wood-grain alignment than our ear-
lier Gaussian-splat outputs; only Turbo occasionally flattens
micro-bevels, yet proportions never warp or self-intersect.
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Diffusion also eliminates the view-dependent “breathing”
seen in splats, though aggressive pruning can oversmooth
concave details such as button tufts. Overall, latent diffu-
sion offers more predictable, mesh-friendly geometry with
a latency dial that can be turned down sharply before per-
ceptual quality suffers.

8. Conclusion

Our experiments revealed several key insights. While
LoRA fine-tuning of SDXL yielded a modest improve-
ment (0.78% in CLIP score) in the initial text-to-single-
view image generation stage, this enhancement did not
translate to downstream improvements. In fact, the base
SDXL model performed better in the subsequent 2D-
to-multi-view stage by 2.59% in CLIP score when com-
pared to the pipeline using the fine-tuned SDXL. This sug-
gests that optimizing an early component in isolation may
not guarantee better overall pipeline performance, possibly
because the fine-tuning led to characteristics (such as in-
creased object isolation, as noted in our qualitative anal-
ysis) that were detrimental to multi-view consistency. For
the 3D generation stage, the Hunyuan3D-DiT framework,
particularly its baseline variant (G), demonstrated the
highest geometric fidelity. Its Turbo (Gr) and Fast (Gg)
variants offered significant latency reductions with minimal
quality degradation, highlighting the robustness and effi-
ciency of latent diffusion for shape generation. The latent
diffusion approach generally produced sharper, more coher-
ent meshes.

The superior performance of the base SDXL in the multi-
view context, despite the fine-tuned model’s single-view ad-
vantage, underscores the complex interplay between stages
in a sequential generation pipeline. The fine-tuning might
have over-specialized SDXL for single, clean chair im-
ages, which, while improving CLIP scores for that specific
task, did not provide the rich contextual cues or view di-
versity beneficial for ImageDream’s multi-view synthesis.
The Hunyuan3D-DiT model variants performed well due to
their robust VAE architecture and the effectiveness of diffu-
sion transformers in learning compact latent representations
for 3D shapes, leading to high-quality SDF predictions and
subsequent mesh generation.

For future work, several avenues warrant exploration.
Given more time, team members, or computing resources, a
primary focus would be to address the performance drop in
the multi-view stage. This could involve directly fine-tuning
the ImageDream model on our specialized chair dataset or,
ideally, a larger and more diverse dataset. Collecting a sig-
nificantly larger and more varied dataset of captioned chair
images could also be vital for improving the robustness of
all fine-tuned components. Furthermore, investigating alter-
native 3D reconstruction backbones, such as 3D Gaussian
Splatting or Neural Radiance Fields (NeRFs), could offer



valuable comparisons in terms of rendering quality, geomet-
ric detail, and training efficiency, especially if tightly inte-
grated with the text-conditioned multi-view inputs. Explor-
ing different conditioning mechanisms between the pipeline
stages or even attempting an end-to-end fine-tuning of the
entire CGM could also lead to more cohesive and higher-
fidelity 3D chair generation.
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